Program evaluates pressure drop for single phase fluids

Fortran 77 computer program calculates pressure loss through piping systems with fittings for single phase fluids

A. K. Coker, H&G Engineering, Glasgow, U.K.

A FORTRAN 77 PROGRAM has been developed that calculates pressure losses through pipe with fittings for single phase fluids. Previously published programs have been mainly for use in card programmable calculators or in a BA-SIC language with limited versatilities^{1,2,3}. The program is written to calculate pressure drop of single phase incompressible fluids at isothermal condition when flowrate and system characteristics are given. For compressible fluids (gas and vapor lines where pressure losses are small relative to the line pressure), reasonable accuracy can often be predicted providing the following conditions are met:

The average gas density of flow is used.

i.e.
$$\rho = (\rho_1 + \rho_2)/2$$

The pressure drop is less than or equal to $40\,\%$ of the upstream pressure.

i.e.
$$(P_1 - P_2) \le 0.4P_1$$

This is because energy losses due to acceleration and density variations can be neglected up to this limit. In cases where the pressure drop is less than 10% of the upstream pressure, an average value of ρ is not required and either the downstream or upstream density can be used. The program, however, does not account for pressure losses in longer pipelines involving compressible fluids where the total pressure loss is greater than 40% of the upstream pressure. In such complex cases, methods for solving the pressure losses in the lines are described by Sandler and Luckievicz⁴ and Crane Co. Ltd.⁵. Alternatively, the line can be divided into segments so that the pressure loss in each segment is less than 40% of the upstream pressure, taking the density variation in each segment.

Program features. The program is interactive with the user (i.e. user friendly) and produces a report quality output. It requires either the mass flowrate or volumetric rate of the fluid being considered. Calculations are accurate for both laminar or turbulent regimes and the program uses the Colebrook equation⁶ to determine the Darcy friction factor, f_D . It also incorporates changes in pipe sizes due to sudden enlargement or contraction. The program includes the two-K method developed by Hooper^{7,8} to determine the excess head loss in a pipe fitting.

TABLE 1—Velocity head factors of pipe fittings

			and the second s		10.000	
st.		Fit	ting type		K ₁	K∞
	90°		: 1), screwed : 1), flanged/weld D = 1.5), all types		800 800 800	0.40 0.25 0.20
Elbows		Mitered elbows (R/D = 1.5)	1 weld (90° and 2 weld (45° and 3 weld (30° and 4 weld (221/2° a 5 weld (18° and	gles) gles) ngles)	1,000 800 800 800 800	1.15 0.35 0.30 0.27 0.25
	45°	Standard (<i>R</i> / <i>D</i> = 1), all types Long-radius (<i>R</i> / <i>D</i> = 1.5), all types Mitered, 1 weld, 45° angle Mitered, 2 weld, 221/2° angles			500 500 500 500	0.20 0.15 0.25 0.15
	180°	Standard ($R/D = 1$), screwed Standard ($R/D = 1$), flanged/welded Long radius ($R/D = 1.5$) all types			1,000 1,000 1,000	0.35
Tees	Used as elbow	Standard, screw Long-radius, scr Standard, flange Stub-in-type bra	rewed ed or welded		500 800 800 1,000	0.70 0.40 0.80 1.00
	Run- through tee	Screwed Flanged or weld Stub-in-type bra			200 150 100	0.10 0.50 0.00
Valves	Gate, ball, plug	Full line size, β Reduced trim, β Reduced trim, β	R = 0.9		300 500 1,000	0.10 0.15 0.25
	Globe, standard 1,500 Globe, angle or Y-type Diaphragm, dam-type Butterfly 800		1,000 1,000			
	Check	Lift Swing Tilting-disk			2,000 1,500 1,000	1.50
	Note: Use $RID=1.5$ values for $RID=5$ pipe bends, 45° to 180° . Use appropriate tee values for flow through crosses.					

Changes in pipe sections due to enlargement and contraction. The frictional losses caused by a sudden contraction (entrance) or enlargement (discharge) are included in the design of any piping system and are determined by the

following expressions.

For a sudden contraction, the resistance coefficient or velocity head can be expressed as:

$$K = 0.5 \left\{ 1 - (d/D)^2 \right\} \tag{1}$$

Alternatively, for a sudden enlargement

$$K = \{1 - (d/D)^2\}^2 \tag{2}$$

where d = smaller pipe diameterD = larger pipe diameter

The Two-K method. The two-K method used in the program is accurate for either low or high Reynolds number, N_{Re} . This method is more favorable than the conventional